Saturday, August 16, 2008

Carbon feet



The language of global warming is fraught with moral connotations, which is unfortunate because such language automatically divides things and actions into "good" and "bad". As we've seen, such language is neither helpful nor good for the causes they purport to further, because any free-thinking mind with half an ounce of logic can come up with cases against the both the good and bad sides. But what rankles me most about global warming is how imprecise the language is, and how slovenly the words are tossed around. To whit: carbon footprints.

I don't have carbon feet, nor do I walk on graphite or diamonds--but the most abstract definition of one's carbon footprint refers to how much carbon dioxide one generates throughout the course of one's life, day, year, month...and this is the first of the problems related to the words surrounding global warming. If I have a Hummer that I only drive once a year (I don't, nor would I ever get one), technically my carbon footprint would be smaller than that of a Prius that gets driven every day. But on the one day that I do drive it, yes, it leaves a major footprint behind--but I'm willing to bet that it's less than the impact of an everyday Prius.

This calculator
has a nifty little feature that enables you to calculate how big your carbon footprint is, and then it gives you tips to "offset" it. What exactly is meant by that, I don't know--unless you can magically remove all of the carbon dioxide that your actions have emitted, you're not offsetting anything. You can, obviously, engage in activities that use fewer or no fossil fuels, but that's not taking out the carbon dioxide from leaving your TV on all day when nobody's home to watch it. The whole idea that you can offset your carbon footprint is absurd. Certainly, you can and should minimize the amount of emissions your day-to-day activities involve. But there's no magic carbon quota that you can't exceed, so there's no logic in saying "Well, if we take the SUV, we'll have to hang our laundry out for a month to dry instead of using the dryer to offset our carbon footprint." The carbon dioxide from the SUV is still going to be there irrespective of how you do your laundry.

This is not to say that we shouldn't take steps to minimize our reliance on fossil fuels and all of the activities and items that stem from them--electricity, plastics, cars (obviously). But we need to quit deluding ourselves that driving a Prius could possibly be good for the environment. Most of the "offsetting" activities are, ate best, merely not bad, or not as bad, for the environment.

Our own carbon feet are pretty small: we don't own a car--we have bikes. We reuse plastic bags. We recycle. We don't eat organic all of the time, but I'm starting to get my in-season produce from the organic farmers' stall in the farmer's market. Appliances, for the most part, get turned off when they're not used. This blog is written from a laptop, which uses less energy than a full-sized desktop. Most of our furniture was acquired secondhand or built. We do these things partly by choice, but mostly by economics.

Monday, August 11, 2008

Environmentalism: global warming edition



Global warming is the cause du jour these days, and no serious science magazine or blog can exist without at least some mention of it.

But there's more to the reason for starting this next series than mere vanity or an overinflated sense of import (which I assure you, I do not have any more than the next man). Part of it is the frustration that's grown out of following the environmental news--what the hell is a "carbon footprint", and does buying a Prius really cancel out the impact of buying your clothes from a sweatshop in Bangladesh? Part of it is the headsmashing idiocy of pro-environmentalist movements in failing to grasp the bigger picture--hello, humans have to live on this planet, too! Part of it is sheer curiosity--which is worse, a Hummer or an Aston Martin?

And part of it will be my take on how to solve the problem--well, at the very least, keep it from getting worse. No, it does not involve ethanol from corn--something I've never believed in.

Those topics will all be addressed this week.

Saturday, August 9, 2008

Dope



Anabolic steroids, human growth hormone, erythropoeitin, albuterol, caffeine--all illegal (caffeine is limited to certain levels), barring a doctor's prescription for some of the fancier drugs. In the sports world, a positive test brings disgrace, and possibly ends a career.

The International Olympic Committee has laid out a rather extensive set of anti-doping rules in the hopes of having a clean Game. The Prohibited List is a veritable pharmacy of just about every drug ever conceived--even if there's no reason why it should work as a performance enhancer (alcohol? really?). The reasons for the anti-doping stance are that the athletes would suffer, and that it wouldn't be fair.

Since the Olympics are about the achievements of the human body, then only humans, unenhanced and undoped, should be allowed to participate. But the same arguments for not doping apply throughout the world of sports: it's not fair, and the athletes might kill themselves.

The latter is unquestionably true. People do crazy things for glory--shoot themselves up with anabolic steroids, train themselves to the point of collapse and death, go for 96 hours without sleep so they can run 100 miles, etc. There is also a tendency, unless you know better (and most don't) to think that if a little bit of XXXX works this well, then a lot should work much better. Well, yeah--snort a line too many of cocaine and you die. And there's no reason to think that education will help matters much. When it comes to feeling good, even if there's a bad reason for it, people will want to feel good (actually, the principle of positive reinforcement applies across most species of animal life).

But is it truly not fair? If golfers can have LASIK done to improve their golf games, baseball pitchers can have tendons grafted, swimmers can buy thousand-dollar shark suits, tennis players can have the latest in materials for their rackets, then what isn't fair is that others who can't afford these procedures or equipment should be forbidden to take performance-enhancing drugs so that their performance can match the ones who can.

Yes, I was being a tad facetious. But in all seriousness, what is the difference, philosophically, between taking a performance-enhancing drug and having the latest equipment? As a matter of fact, one could almost suggest, given the extensive list of prohibited drugs, that it would be more fair to allow athletes to use drugs (which they can get anywhere) than it would be for them to use top-of-the-line equipment (which they can't). Both confer unfair advantages when compared to a person who's not using either--or they could confer no advantage. Dependence on either drugs or technology is a dangerous position to be in for any athlete.

The difference, I suppose, is that technology does not guarantee success--you'd still have to a hell of a player to beat Roger Federer, latest racket be damned. But then, neither do steroids, or other drugs--the price exacted for temporary success comes later, though, and most people can't wait that long.

Friday, August 8, 2008

Yummy! Chemicals!




1) Carnitine: Carnitine (or l-carnitine, if you care to be that specific) is a fatty acid transporter. It basically helps fat move from one side of a mitochondria to the other, where it can be broken down, like a crossing guard helping kids across the street. Because fat yields 9 kcal/g of energy (as opposed to the 4 kcal/g in proteins and carbohydrates) it stands to reason that having plenty of carnitine should allow you to burn lots of fat, and either lose weight faster or, for athletes, get more energy--for the first 30 seconds of sustained physical effort, the muscles go through the glycogen that they've stored. For the next 4-6 minutes, they go through the sugar that's already in the blood. After that, they begin to utilize fat as an energy source as well as the sugar that the liver releases--hence, carnitine.

But does it work? First, let's consider the following: the kind of athlete who would most benefit from carnitine would be an endurance athlete, since they have taxed their muscles to the point where they would need fatty acids. So why, in most of the trials where they've studied carnitine, do they use "resistance-trained" subjects (resistance training referring to weights)?. And if carnitine does, in fact, help with weight training, does the condition of the athlete prior to the study matter? Given the current lack of evidence and a good study to look at, I'd have to venture NO on this one.

2) Carbohydrate loading This was first cooked up in 1957, by Gunthar Alvorg. The premise goes like this: you deplete your glycogen stores completely for about three days, going on long runs and not eating a single carbohydrate. Then, for three days, you replenish your glycogen stores by eating lots and lots of carbohydrates. And on the big day, you run forever, because your body has somehow "soaked up" the glycogen.

It's a very nice theory. And there is some merit to it--after all, endurance athletes go through carbohydrates like a chainsaw through butter. This article gives an extremely detailed account of how carbohydrate loading is supposed to work, but the science shows otherwise. In study after study, they've shown no significant between performance or glycogen storage capacity between those who were carb-loading and those who were not.

So the verdict on carb-loading is, again a NO. However, given that it is, for the most part, harmless and doesn't require spending a fortune on sugar pills, and that many of us feel better for it, go ahead and enjoy that pasta dinner before your marathon.

3) What are the protein requirements of athletes? Protein is what makes a body a body--amino acids are the molecular building blocks for the impressive biceps of gymnasts and the massive thighs of a cyclist. Muscles are constantly being broken down and rebuilt, and it is this sped-up cycle of break-down-build-up that makes the protein requirements of athletes higher than those of us ordinary mortals. Given that ordinary, relatively sedentary people require only 50-70 grams of protein a day, or about 10 ounces of meat a day (meat is mostly water, and only 10-20% protein), it is surprising, really, how little protein athletes really need: 90 g for a male triathlete is plenty. Obviously, if you're growing, or trying to grow muscle, you'll need to eat relatively more protein But again, like carbohydrate loading, this is more a question of personal opinion. I never paid much attention to how much protein I was eating, because I assumed that eating a varied vegetarian diet would suffice. And it did, for the most part. But others have to watch their protein intake carefully.

Thursday, August 7, 2008

Breakfast of champions: part 1 of 2

Huh--this series is turning out longer than I thought...



A normal, balanced diet (whatever the hell that means nowadays) will suffice if you are your average Joe, working out three, four, five times a week and otherwise keeping fit. But every four years, we get inundated with patriotic voyeurism as the lives of the athletes that are competing in the Olympics gets scrutinized as the celebrities they are, even if it is for the fifteen minutes, fifteen seconds, of fame, and we start to wonder--what the hell is in the water?

The science of sports nutrition is as old as the Olympic tradition itself, beginning in ancient Greece. Of course, they didn't have electronic treadmills and sensors to gauge their autonomic responses, nor lab notebooks to record the athletes' responses to various diets, so the "recommendation" of meat and wine must be taken with a grain of salt (perhaps an entire saltshaker). Obviously, these days, our understanding of physiology and nutrition are much better. The athletes are told to go easy on the alcohol and the best athletes have their carbohydrate, protein, and fat intakes carefully calibrated for them.

What makes sports nutrition so difficult to analyze objectively: 1) most theories floating around these days only came about in the last century, which is also when physiology was refined as a science, and materials science developed the stuff that many athletes take for granted--plastics for oars, rubber for running shoes. If there was any improvement by any group of athletes over the years, how are we to tell whether it's from better food, training, or materials? Reason 2) is that anybody who's seriously done any sport for any amount of time has probably worked out his own ideas of what's right and what's wrong for him, and God help the doctor who tries to tell him he's wrong. As irrational as this is, there is a certain amount of sense to sticking with what works, even if it shouldn't. For elite athletes, the win or loss is rarely about ability--at the Olympian level, the abilities of all are pretty comparable--but rather about the head game, what goes on in your head. Psyching oneself up--or out--can be as easy as sticking to your morning oatmeal (and adding raisins for luck).

The biggest problem, though, is that compared to other sciences, nutrition--never mind nutrition and sports--is newbie on the science circuit. Every other day we're told that product X is good for us, or bad for us, depending on which news outlet we follow, which scientist published his results in which journal, whether the journalist has any idea what the hell the paper is about (and many of them don't), whether anybody looks over the statistics, and so on. Science, for the most part, moves in one direction, towards more complexity, but nutrition tends to backpeddle, stagnate, and eventually become even more muddled as we seek to define the roles of genes, diet, and environment.

And undoubtedly, there is a large genetic component to who becomes an elite athlete and who doesn't. Whether diet makes or breaks the deal...?

Tomorrow: a brief glimpse into the (pseudo)science behind

1) L-carnitine
2) Carbohydrate loading
3) Protein requirements

Wednesday, August 6, 2008

Flying through water

http://www.blogger.com/img/gl.link.gif

Once again, the lack of human subjects in my photograph collection shows itself, as I'm compelled again to substitute another animal (or animals, in this case) in lieu of a swimmer*.

The musculature of any elite athlete is impressive, but perhaps none more so than swimmers, because the range of motion they must achieve and the difficulty of moving through water for non-fish-shaped creatures necessitates acquiring both the strength and/or endurance to push through the water, and the flexibility to ensure that every ounce of your strength is not wasted.

So we begin to see the appeal of resistance stretching. As it's usually described, you resist an applied force as you stretch. Rather than just reaching over and touching your toes, you have to reach for your toes while pulling against an elastic band, for instance. This is what Dara Torres credits for her incredible swim times in the 50 and 100 m, after all, and since she's tested clean, we're led to believe that there must be something to it.

But if you clicked on the link, you'll see a lot of mumbo-jumbo about meridians, personalities, fluff about "empowerment", and not a single shred of how it works--or even a proposistion for how it works, if it is indeed the miracle workout that enabled Torres to do at 41 what she couldn't do at 14. It purports to protect the muscle, but there's not much science to show that it works. In fact, most of the studies that I've seen say it doesn't work--to the practitioner's detriment.

Muscles, as we have seen do indeed undergo lengthening contractions. But the consequences of routinely using lengthening contractions--in muscles where this was not intended as normal function--are less clear. What literature there is on this subject tends mostly towards the opinion that lengthening contractions actually cause damage to the muscle, albeit on the microscopic level. One study purports to demonstrate that stretching a muscle after it's fully contracted results in greater force generated, but that is hardly the same thing.

As of now, the evidence is against resistance stretching being the key to Torres's amazing performance. And so the skeptics look at her doping non-history. Frankly, no, I don't think she's doping, but it wouldn't surprise me if it later came out that she was. But I still think the best explanation for her success is practice. Tons of it. And being gifted with a freak genetic makeup that makes her so damn good at what she does--this blog does an adequate job summarizing a WSJ article that is no longer online--like so many other elite athletes.

There's a saying in the sports world that anybody who wants to make it as a major athlete must choose his parents wisely. As of now, we haven't quite figured out what makes Torres so freakishly good at what she does (maybe it's her telomeres), but that, I think, would be an interesting next step, much more so than the questionable (at the very least!) "benefits" of resistance stretching.

And for what it's worth: if someone could point me to a good study about resistance stretching and how it works, I'd be open to revising my opinion on it.

*Actually, I have some issues with publishing pictures of people online--I know I'd want permission before my photograph went up, and I feel obligated to extend the same courtesy to thers.

Monday, August 4, 2008

Muscle mechanics: part 1 of 2



I must apologize for the visual pun--I usually try to avoid having a photograph that is tangentially related to the topic, but in this case, I don't exactly have any photographs of hulking bodybuilders or pieces of muscle tissue--I take or have taken all of the photographs myself, and as of this moment my life is lacking in muscle-bound semi-naked men.

So a turkey will have to do: this particular turkey and its chick (what my sister and I like to call "gibblet") happened to land in the backyard of my parents' house last spring. Turkeys have a lot of muscle, most of it in their breast, which is where the prime cut is.

Muscle tissue is basically long strings of protein that slide past one another. The full biochemical story can be found here, and I recommend that you look at the figures (links on the right) in conjunction with the text to get the whole picture.

The human musculoskeletal system is really a very elaborate system of pulleys, where a contraction of one muscle gets transmitted into a movement across a particular joint. Bones, in this case, are more than merely the support structure for the rest of us--they provide the foundation upon which these pulleys are anchored. Nowhere is this more evident than in the hands:

The muscles that control the flexion and extension of our fingers are actually located in our forearms. There are two sets, one to bend the first knuckle, and one to bend the second. Another two sets are on the backside of the hand, to provide extension of the fingers. The tendons must be threaded through a very narrow gap in the wrist (and we wonder why carpal tunnel is such a problem) before they can attach to the their assigned bone, but when you are typing, it is the muscles in your forearm that are doing the work (even if it feels like the muscles in your wrist--which there aren't any).

The hands also serve to illustrate the principle of opposing pairs. Just like Newton's Third Law, muscles work in opposing pairs. The usual example is that of the biceps vs triceps, where one relaxes while the other contracts. While it's a useful illustration of the concept, it's not the whole story, as muscles can also "contract" even while they lengthen. The best example of this is to bend over and pick something up--if the muscles in your back were to go loose as you started to bend, you'd have a very hard time reaching the floor without injury.

Next: Dara Torres...

Sunday, August 3, 2008

The Olympic Games



In light of the upcoming Olympics, I've decided to postpone the planned environmental series in favor of a comparatively short series on the science of sports medicine in general, and possibly toss in a few training tidbits from my own experience in the triathlon sports (not that I'm actually a triathlete, by any stretch of the imagination, but I bike, and I used to run and swim. I'm trying to squeeze running back into my crazy life and looking for a pool).

Sports, more than most fields (even medicine), occupies that gray zone between hard reality and delusional ideology. Athletes do ridiculous things to themselves because they believe a certain regimen or supplement or protein powder works, but these are people in peak condition anyway--does it work, or doesn't it?

And of course, no discussion on sports medicine would be complete without the obligatory post on doping. Again, the lines are fuzzier than you might think.

So this week, gentle readers, you can look forward to pieces on:

1) Muscle mechanics
2) Food and sports
3) Doping

Once again, if there are any topics you'd like to see addressed, by all means let me know.

Wednesday, July 30, 2008

The Problem of Purpose (part 2)

If there is no purpose for us to fulfill--if we are indeed here because the survivors of hecatomb after hecatomb (I love Steven Jay Gould) then we must question what all these genetic studies tell us. You know what I mean: the genetic studies telling us that we're "designed" to store fat, destined to get cancer, preordained to suffer mental illness, headed straight for addiction--that the few genetic diseases that we understand (sickle cell, cystic fibrosis) arose as adaptations to a new world order.

I don't mean to question the studies themselves. The studies are, more or less, quite sound: the melanocortin system's role in obesity is currently being teased out; single nucleotide polymorphisms of the MC receptor are believed to be responsible for the abnormal reward signals that lead to overeating. Nobody doubts the role of p53 in cancer--or any of the myriad pro-apoptotic genes. Epigenetics apparently has a bigger role in mental illness than genetics, strictly speaking, but there is definitely a genetic component to mental illness. The science is sound--genes, when they go wrong, definitely cause diseases.

But do they necessarily define who we are?

If you follow the "no purpose" argument to the logical conclusion, then the answer is yes: genes select themselves for the sole purpose of being passed down. They don't really care whether or not we survive the passing thereof. That's why otherwise nice men become assholes the moment a busty bleached blond bimbo walks into the room, why women feel obligated to make peace between warring factions, etc.

Or so the argument goes: genetics provides limitations within which an individual can succeed. Certain environments, certain societies, place certain emphases on which genes are prized, and these get propagated. So free will is really a myth.

Or is it?

You'll notice that, throughout this entire series, I've done my darndest not to justify leaning towards one side or the other (and I stated my bias in the beginning, so if I didn't succeed it wasn't for a lack of effort). The reason for this is twofold. First, if you're reading this, odds are you already have a good idea of where you stand on the whole evolution/creationism debacle and anything I write trying to persuade you that creationism isn't a science is just a waste of my time. Secondly, the goal of this series was never outright damnation of either side--to do that would run counter to my personal belief in God--but to ask why this debate is happening at all. Have I missed something? Undoubtedly I have. So please, comment, and let me know what your thoughts are on this whole thing.

Tuesday, July 29, 2008

The Problem of Purpose (part 1)



As humans, we like to think that everything has a purpose. And certainly, nature doesn't contradict that view: peacocks' tails exist to attract peahens, cats have claws so that they can kill mice, birds sing to mark their territories and attract mates, humans have a big brain which enabled the species to develop advanced technologies, cockroaches--okay, maybe those don't have a purpose. The point is that animals exist in certain shapes and forms for reasons, presumably to better fulfill their "destiny", to live out their "purpose".

Except this assumes that some force (the Guiding Hand of God, perhaps?) was directing a small furry mammal to become say, a lemur, and then the lemur to become an ape, and the ape to become a human. It assumes that there was a reason for the animal to evolve along the lines it did.

Scientists make this mistake a lot, actually. Genetic studies purporting to demonstrate why we are genetically predisposed to becoming obese, the link between abnormal proteins here and Alzheimer's/schizophrenia/drug addiction there, and sickle cell anemia and resistance to malaria, must be very careful not to ascribe the selection pressures for a particular gene as the purpose for the gene's existence. Genes exist, solely because the vehicle they are temporally transferred in (living creatures) managed to live long enough to pass it on. No lemur decided, "Hey, this tree-climbing thing is sure getting hard out here on the savanna. I think I'll evolve bipedalism!"

The fact is, there really is no reason for anything to exist, other than the fact that it's not dead already. And this, I think, is one of the biggest problems creationists have with evolution.

It is a stark picture: you exist only because your parents didn't die before they had you. There is no purpose to your life, no "reason" why you were born in the body that you have and with the brain that was given to you. No wonder creationists have such a problem with evolution: it runs counter to everything religious and/or spiritual belief we might have concerning our existence on this planet.

Natural selection is the reason why we evolved the way we did--God, if He's indeed out there, didn't coax anything along except death, destruction, and mayhem. One could hypothetically argue that He, in His divine might, decided that thus would be the vehicle by which He created all life, but that doesn't really change the essence of the argument: natural selection is a harsh and fickle mistress.